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Abstract

Short-term wind power forecasting tools are required to sup-
port a competitive participation of wind power in electricity
markets against conventional energy sources. Certain tools in-
tegrate appropriate methodologies to estimate or to predict un-
certainties. Then it is possible to use this information to develop
bidding strategies for participation in the market that mini-
mize financial risks and penalties in cases of low predictabil-
ity of wind power. The rules of the market play an important
role on the competitiveness of wind power. The paper proposes
the use of strategies based on wind power forecasting and un-
certainty estimation techniques. The strategies account for the
asymmetry that is observed in imbalance prices. The benefits
are quantified by simulating the participation of wind farms in
the market of Netherlands. The paper shows the increase in
revenues that can be achieved and how such strategies might
have an impact to the balancing mechanism.

Keywords: Wind power, short-term forecasting, uncertainty man-
agement, confidence intervals, electricity markets.

1 Introduction

NOWADAYS, wind farm installations in Europe have
reached 30 GW. Motivated by the Kyoto Protocol, the

European Commission has set the target of doubling the
share of renewables in gross energy consumption from 6%
in 1997 to 12% in 2010 [1]. This directive targets 22,1%
indicative share of electricity produced from renewable en-
ergy sources in total Community electricity consumption by
2010. To achieve this share, installed wind power capacity
in the Member States should increase to 45-60 GW. In 2003,
the European Renewable Energy Council (EREC) revised
upwards the 2010 target to 75 GW [2]. Such a large-scale
integration of wind generation causes several difficulties in
the management of a power system. Often, a high level of
spinning reserve is allocated to account for the intermittent
profile of wind production, thus reducing the benefits from
the use of wind energy. Predictions of wind power produc-
tion up to 48 hours ahead contribute to a secure and eco-
nomic power system operation. Also, as electricity markets
are gaining importance, wind power predictions are helpful
for wind energy producers who have to propose their bids on
the market on a day-ahead (or a few-hour-ahead) basis. In-
creasing the value of wind generation through the improve-

ment of prediction systems’ performance is identified as one
of the priorities in wind energy research needs for the coming
years [3].

Apart from spot forecasts of the wind farms output in the
next hours, of major importance is to provide tools for as-
sessing on-line the accuracy of these forecasts. Such tools
for on-line evaluation of the prediction risk are expected to
play a major role in trading wind power in a liberalized elec-
tricity market since they can prevent or reduce penalties in
situations of poor prediction accuracy.

So far, several studies concerning the participation of wind
energy in electricity markets have been carried out, consid-
ering different market mechanisms and various prediction
methodologies. For instance, Usaola et al. [4] focus on the
Spanish electricity market and try to draw a relation be-
tween the wind power prediction tool accuracy and the in-
come. Holttinen et al. [5] describe the participation of El-
tra and Elkraft (the independent system operator for western
and eastern Denmark) in the Nord Pool and evaluate the cost
of forecasting errors for these market players. Roulston et
al. [6] envisage the use of ensemble weather forecasts for bet-
ter seizing the forecasting uncertainty and enhancing the po-
sition of wind generation in electricity markets. Bathurst et
al. [7] concentrate on the uncertainty of wind generation and
the resulting imbalance costs under the New Electricity Trad-
ing Arrangement. From the use of probabilistic expected
wind generation tables, they define several bidding strate-
gies accounting for the imbalance price asymmetry and the
relative difference between imbalances and contract prices.
However, the authors express the difficulties for generating
the expected energy tables.

The aim of this paper is to evaluate different bidding
strategies on a real-world day-ahead electricity market.
These strategies are based either on the use of advanced wind
power forecasting models or on the use of innovative meth-
ods that consider the wind power forecasting uncertainty and
imbalance price estimates. The chosen short-term exchange
market is the Dutch APX electricity market, which is associ-
ated to the regulation market ran by the Transmission System
Operator (TSO) TenneT in Netherlands.

Initially, the various European market mechanisms are de-
scribed and it is explained why wind power may be pe-
nalized in comparison with easily dispatchable generation.
Then, we consider the participation of wind energy produc-
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ers in the Dutch electricity market with bidding strategies
directly based on wind power forecasts obtained from refer-
ence and advanced models. A new approach for defining bid-
ding strategies is presented. Indeed, we will show that even
if a wind power prediction obtained from an advanced model
is the most accurate guess, it is not necessarily the best bid
one may propose on the market. Concluding remarks will
follow.

2 Trading wind generation in electric-
ity markets

At every moment, the total amount of produced electric-
ity should meet the consumption. This balance is usu-
ally guaranteed by two different mechanisms:(i) produc-
tion/consumption programs established in advance guarantee
an a priori overall balance;(ii) a real-time balancing mecha-
nism that allows the Transmission System Operator (TSO)
to compensate any deviations (imbalances) in the produc-
tion/consumption programs. Electricity markets may be con-
sidered as a solution for that scheduling, since they permit a
cost-effective match between supply and demand bids.

Wind is a highly variable energy production source, which
can be seen as non-dispatchable. Dispatchability can be im-
proved if wind is coupled with storage, however, state-of-
the-art storage options are onerous for supporting large-scale
wind integration. Wind forecasting is a cost-effective solu-
tion, but it appears obvious that there will always be a de-
viation between predictions and actual power output. This
is why wind power producers have to consider their revenue
on the electricity markets as the combination of the income
from the power exchange market (spot market) and of the
cost of imbalances.

Each electricity pool has its own rules and regulations that
determine the way power is to be sold or purchased, how the
prices must be calculated, and the obligations that the partic-
ipants (producers or consumers) are committed to. In order
to stimulate the development of renewables, some pools have
special rules supporting wind generation, such as guaranteed
prices, no program responsibility, etc. In Spain, wind gener-
ation is included in a special regime, with different ways of
payment for the energy injected in the grid [4]. In Denmark,
wind generation may be covered or not by prioritized dis-
patch (power balance handled by the TSO) depending on the
turbines age [8]. At the inverse, in UK all energy producers
participating in the market are considered as equal [7]. An
overview of the European electricity markets is given in [9].

In this study, we consider that all energy producers partic-
ipate in the electricity market under the same rules, i.e. they
have to propose their bids on the spot market (no fixed price),
and they are then financially responsible of their deviations
from schedule. The costs of keeping the balance are charged
to the participants, proportionally to their imbalance.

Our first aim is to show how the use of an advanced wind
power prediction tool can substantially increase the wind
power producer’s income, by reducing the amount of imbal-
ance. The rules and regulations of the considered market ev-

idently affect the results, and this is taken into account in the
analysis of the simulations. However, a roughly similar ar-
chitecture between these rules and regulations can be found,
so that the conclusions may be generalized (with cautious-
ness) to other electricity pools.

The Dutch case we consider here consists in a day-ahead
spot market (APX - Amsterdam Power Exchange), a regula-
tion market ran by the transmission system operator TenneT,
and more recently in an adjustment market that we will not
deal with in this paper.

The day-ahead APX spot market enables the participants
to buy and sell electricity for any of the 24 hours of a day
one day in advance. Every day, APX participants electron-
ically send before 10:30 their buy/sell bids for each hour
between 00:00 and 24:00 of the next day. This means that
wind power producers must base their bids on 14-38 hours
ahead wind generation forecasts. APX runs the algorithm
that matches demand and supply for determining the hourly
marginal price (spot price) and the E-program of each partic-
ipant, specifying the amount of energy a participant is com-
mitted to produce/consume each hour for the following day.
Producers are paid by APX the spot price for the quantity
of energy specified in the E-program, independently of their
actual production.

Every producer supplying power to the Dutch power grid
is responsible for the balance of its E-program (balance be-
tween E-program and actual production). Energy in excess
can be sold on the TenneT imbalance market at the spill
price, and lack of energy has to be bought at the top-up price.
APX spot market and TenneT imbalance market are indepen-
dent and there is no constraint on the sign or the magnitude
of the imbalance prices. However, imbalance is mainly pe-
nalizing: spill price is usually lower and top-up price usually
higher than the spot price. For more details and analyses of
TenneT imbalance prices, we refer to [10].

For intermittent generation, i.e. by a wind farm, APX spot
revenues will globally be reduced by the imbalance costs
due to forecasting errors. Moreover, because these prices
are determined for every 15 minutes and are dependent on
the actual grid imbalance, they are very volatile, almost un-
predictable, and they can reach very high levels. If com-
bined with a large prediction error, high imbalance prices ex-
pose wind power producers to excessive imbalance costs on a
short-term basis, even if on a long-term basis low and high-
level imbalance penalties may balance. Therefore, the par-
ticipation for wind power producers in this market appears
risky. This paper aims to show how the prediction uncer-
tainty estimation can help to attenuate these risky situations
and minimize imbalance costs on a long-term basis.

3 Evaluation of basic participation
strategies on an electricity market -
The test-case of the Netherlands

Participating in an electricity market means proposing quan-
tities of energy for every Program Time Unit (PTU) for the
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following period. For the case of wind power, forecast of fu-
ture generation are a must for bidding in a day-ahead market.
The case of bids from a single wind farm is considered. This
is on the pessimist side since prediction errors are expected
to be higher than the case of multiple wind farms where ag-
gregation smoothes errors. Firstly, the way wind power pre-
dictions are computed is presented, along with the level of
performance of the forecasting method. Then, we describe
the assumptions and the problem formulation related to the
study. Comments on participation strategies follow the com-
putational results.

3.1 Prediction of the wind power output

Wind power forecasting has been an active field of research
in the last decade. There are nowadays several prediction
models either commercially available or developed for re-
search purposes. For an overview of the main and up-to-date
forecasting methodologies, we refer to [11].

In this study, we consider the Armines Wind Power Pre-
diction System (AWPPS) developed by Kariniotakis [12].
This prediction tool accommodates both on-line production
data and Numerical Weather Predictions (NWPs) and gives
an estimate of future wind power generation typically for the
following 0-48 hours. At the moment of update, the most re-
cent available NWPs are used as input to the model together
with measurements of wind power. On-line production data
are usually provided via a Supervisory Control and Data Ac-
quisition (SCADA) system and allows one to account for
the persistent behaviour of the wind. The consideration of
NWPs improves considerably the performance [12]. Espe-
cially for ”longer-term” horizons (up to 48 hours ahead), they
are indispensable since they represent weather dynamics that
cannot be modelled using only recent on-line data. In an on-
line environment, the models uses self-adaptation schemes
for fine-tuning its parameters to account for variations in the
environment of the application, changes in the NWP model,
etc. AWPPS has already been adapted and evaluated for sev-
eral onshore wind farms, for instance in Ireland [13], as well
as for offshore conditions [14].

In order to illustrate the level of performance of AWPPS,
we focus on one of the wind farms considered in this study.
The available time-series cover a period of almost two years
from which 6600 hours were used for training (learning set),
1000 hours for cross-validation and one year for testing the
performance of the model. They include hourly wind genera-
tion data for the whole park, as well as Hirlam NWPs of wind
speed and direction at 10 meters and at 3 atmospheric pres-
sure levels. The NWPs have a spatial resolution of around
0.15°. They are provided 4 times per day and at the level of
the wind farm as interpolated values.

An evaluation protocol for wind power forecasting mod-
els has recently been proposed [15]. Here, we concentrate on
the Normalized Mean Absolute Error (NMAE) criterion, as
well as on prediction error distributions to give a broad view
of the model performance for that particular wind farm. The
normalization of the prediction error is done by using the
installed capacityPn. The NMAE allows one to give the av-

erage deviation (in absolute value) from the power measures
over the whole period, while distributions give more insight
on the frequency of occurrence of small and large errors. For
this test case, the prediction bias is almost null: the model
does not tend to under- or over-predict the wind generation.

Figure 1 depicts both Persistence and the advanced model
performance described by the NMAE. Persistence is a sim-
ple model, considered as a reference, which states that power
output in the following hours should be the same as the last
measured value. Such benchmark model is hard to beat
for the first horizons (0-6 hours). One can notice that here
AWPPS always outperforms Persistence even for the short-
term. For further horizons, the improvement proposed by the
advanced approach is highly significant. For instance, if we
focus on the 24-hour lead time the NMAE is around 14%
of the wind farm nominal power while the NMAE is around
27% for Persistence.

Moreover, when forecasting 24-hour ahead, the error is
less than 7.5% of the installed capacity 37% of the times,
while large errors (larger than 27.5% of nominal power) oc-
cur only 18% of the times. Such information is given by the
error distribution depicted in Figure 2. Note that this level
of performance is for that particular wind farm and may be
different for wind farms situated in complex terrain or in off-
shore conditions. It is recognized that wind power prediction
models perform differently depending on the site conditions,
on the period of the year, on the used NWPs [16], etc. Also,
the level of error would be notably lower if we were con-
sidering an aggregation of wind farms, or a complete region,
thanks to smoothing effects [17].
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FIGURE 1: Comparison of Persistence and AWPPS performance using the
NMAE criterion.

3.2 Assumptions

In order to simulate the participation of wind energy in an
electricity market, we use series of wind power forecasts
over a one-year period (from January 1st to December 31st).
Regarding the electricity market, we consider the APX spot
market and TenneT regulation price data over 2002.

Today, it is not really stated if a high share of wind in the
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FIGURE 2: Prediction error distribution for the 24-hour ahead horizon.
Errors are sorted by bins representing 5% of installed capacityPn.

total electricity generation has a real influence on the mar-
ket prices. For the case of the Nord Pool, which is a market
highly penetrated by wind generation, several studies have
been carried in order to determine the real influence of wind
power on the market price behaviour. Kristoffersen et al. [18]
developed a market simulation model at Eltra (the system
operator for western Denmark), and simulated the market
consequences of large-scale integration of wind power. One
of the main conclusions is that wind power affects market
prices. Besides, Morthorst [8] in an analysis of the market
data over the years 2001 and 2002 observed there was a ten-
dency that more wind power in the system leads to relatively
lower spot prices (and vice versa), but no strong relation is
established. In the case of the present study, which concerns
a market that is not highly penetrated by wind generation, we
assume that we can neglect this effect anyways.

To set up the present study, we have also made the follow-
ing assumptions:

• wind power producers act in the electricity market as
conventional producers and do not benefit of derogatory
rules such as guaranteed price, no program responsibil-
ity, or premiums for nature-friendly electricity genera-
tion. However, due to stochastic and intermittent nature
of wind, we have considered that they do not make any
bids for regulation and reserve power supply and that
they do not participate in the adjustment market.

• the only control wind power producers have on their
production is binary: supplying or not supplying the en-
ergy to the grid. This means they do not have possibili-
ties to down-regulate the wind generation, or to couple
that power output with conventional generation means,
or even to use energy storage devices.

• the price limit in the bids sent to APX will be set to
the minimum so that all of the predicted energy is sold.
By doing this, the wind power producer determines its
E-program. The producer will be paid the hourly sys-
tem marginal price (spot price) for the corresponding
amount of energy stipulated in the E-program.

• normally, it is possible to make changes in the E-
programs. Here, we have considered that energy pro-
ducers make only one bid a day, at 10:30 for the fol-
lowing day. Thus, the 10:00 wind power prediction is
used.

• any participant in the APX market have to pay an en-
trance and yearly fees, which may be prohibitive for
small capacity generators. These fees are not taken into
account in our study.

3.3 Problem formulation

The revenue of a participant in the Dutch electricity market
proposing an amount of energyE c

i and actually generating
E∗

i can be formulated as follows, for a given PTUi:

Ri = pc
iE

c
i +

{
p+

i di , di ≥ 0
p−i di , di < 0

, (1)

with:

• di = (E∗
i − Ec

i ) the deviation from contract,

• pc
i the spot price,

• p+
i the down-regulation price,

• p−i the up-regulation price.

This revenue is composed by the income on the spot mar-
ket and by the cost of imbalances. Note that TenneT regula-
tion prices may be either positive or negative. Thus, it might
be possible to be rewarded for an imbalance, if this imbal-
ance is convenient for the system operator.

Because we do not want to see theEc
i term of (1) appear-

ing in both the contract revenue and the imbalance costs, we
reformulate (1) such that the revenue is composed by the in-
come from the actual production plus the cost for eventual
deviations from perfect prediction:

Ri = pc
iE

∗
i −

{
w+

i di , E∗
i ≥ Ec

i

w−
i di , E∗

i < Ec
i

, (2)

where{
w+

i = pc
i − p+

i ,
w−

i = pc
i − p−i .

(3)

The coefficientsw+
i andw−

i can therefore be seen as the
penalties for repectively positive and negative deviations
from perfect prediction.

The daily revenue of a market participant is obtained by
summing the income for each PTU.

3.4 Results

Table 1 summarizes some of the Dutch market characteris-
tics for 2002 and 2003. Note that the cost for positive and
negative deviation from perfect prediction are not the same:
a positive prediction error costs in average almost three times
more than a negative prediction error for this year for 2002.
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This ratio is slightly higher than the one observed for 2003
or for instance by Morthorst [8] for the Nord Pool over 2002.
There is a general tendency that penalties for downward reg-
ulation are higher than those for upward regulation.

Moreover, one can notice the average spot price is sig-
nificantly higher in 2003 than in 2002, while penalties for
deviations stay at a similar level. The market is more severe
in 2002: the cost of prediction errors is relatively higher.

TABLE 1: Market characteristics for 2002 and 2003: average spot price
and penalties for upward and downward regulation.

year p̄c
i (e/MWh) w̄−

i (e/MWh) w̄+
i (e/MWh)

2002 29.99 4.03 10.93

2003 46.47 8.93 11.39

Results from the simulation of the market participation of
the considered wind farm are gathered in Table 2. Results for
other wind farms we have considered in the study are similar
and thus not presented here. The main conclusions are that:

• the use of an advanced prediction method contributes
to reduce significantly the volume of energy in imbal-
ance. This means that wind power producers are then
less concerned by penalties and thus by financial risks,

• the net income obtained with the advanced prediction
approach is obviously better than the one obtained with
Persistence. The maximum revenue (that would be ob-
tained with perfect predictions) is reduced by more than
20% if using Persistence while it is reduced by only
13% if using AWPPS.

TABLE 2: Simulation results over 2002 with predictions given by both
Persistence and the advanced forecasting approach. Thepart of imbalance

represents the volume of energy in imbalance. Theperformance ratio
represents the revenue obtained with the prediction model in comparison

with the revenue one would have obtained with perfect predictions.

Persistence Advanced model

Part of imbalance (% of contracted energy) 73.6 40.6

Performance ratio (%) 79.1 87.0

4 Definition and evaluation of ad-
vanced bidding strategies

Wind power forecasts cannot be exact. A part of the un-
certainty is due to the inaccuracy of the numerical weather
forecasts used as input. An uncertainty estimation related
to each individual forecast has to be given to end-users, so
that they can decide on the risk they should undertake (i.e.
level of allocated reserves, trading strategy, etc). Recently,
several methodologies have been proposed to provide uncer-
tainty estimates in the form of confidence intervals [19–21]
as well as uncertainty estimates depending on meteorologi-
cal situations [22, 23]. Ideally, probabilistic forecasts would

give the whole information on the expected wind generation.
In that sense, first methods are developed based either on lo-
cal quantile regression [24], or on ensemble forecasts [25].

In this section, we describe a generic method that allows
a wind power producer to define its optimal bid on an elec-
tricity market from a wind power forecast associated with
uncertainty information in the form of a probabilistic distri-
bution of expected wind generation.

4.1 A method accounting for the uncertainty
assessment

In previous part of the paper, we showed the benefits from
the use of an advanced prediction approach for bidding in
an electricity market. Such prediction tools are designed for
giving forecasts as accurate as possible. For defining the ac-
curacy (or the level of performance) of those prediction tools,
several criteria are available. The consideration of different
criteria (minimization of errors in absolute values, of squared
errors, etc.) may lead to different appreciations of the model
interest for decision makers [26].

When considering electricity markets, the best model is
not necessarily the one that provides the most accurate pre-
dictions, but the one that permits to define an optimal bid-
ding strategy (i.e. which maximizes the expected revenue).
In [24], it is shown how to choose the quantile of a proba-
bilistic wind power forecast for that purpose. This quantile
is a function of the upward and downward regulation prices
only. Here, we describe a method for defining the best con-
tract level by minimizing the imbalance cost.

4.1.1 Cost of deviations

Let us define a functionf that gives the cost of a deviation
from contract (previously defined asd). Such deviation from
contract may be the prediction error if the contracted level of
energy is set to the forecast generation value. The cost func-
tion f should reflect the cost of the deviation for the wind
power producer. If an electricity market such as the Dutch
one is considered, thef function can be defined as an asym-
metric linear function of the deviations

f : d →
{

α+d , d ≥ 0
α−d , d < 0 , (4)

whereα+ andα− are estimates of the expected imbalance
costs for positive and negative deviations:

α+ = ŵ+, α− = ŵ−.

Note that one can build their own cost function for bet-
ter reflecting proper sensitivity to deviation costs (use of
an asymmetric quadratic function, combination of quadratic
and linear functions, introduction of non-linearities, etc.).

4.1.2 Definition of bidding strategies

Given the probabilistic distribution of expected wind gener-
ation for the PTUi, and given the deviation cost function
f , there are various ways to determine the optimal contract
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level. Here, two policies based on Probabilistic Choice (PC)
or Risk Analysis (RA) based on definitions by [27] are in-
troduced: the former aims at minimizing the expected im-
balance cost, while the latter intends to minimize the cost of
the worst case. This means that the PC strategy will lead to
a maximized income on a long-term basis, without avoiding
large losses on some days. At the inverse, the RA strategy
tries to minimize losses in risky situations though it cannot
insure optimal revenue on the long-term.

Both strategies can be formulated as follows

• Probabilistic Choice:

hPC(Ei) =
∑

k

(
P(E∗,k

i ).f(Ei − E∗,k
i )

)
, (5)

• Risk Analysis:

hRA(Ei) = max
k

(
P(E∗,k

i ).f(Ei − E∗,k
i )

)
, (6)

whereEi is the possible contract level at PTUi and P(E∗,k
i )

is the probability of the eventE∗,k
i occurring at same PTU.

By minimizinghPC andhRA, the optimal bids under the PC
and RA strategies are obtained.

4.2 Application to a real-world case study

The case study of the participation of a wind farm in the
electricity market in the Netherlands is further investigated
here, by applying the PC strategy. Data for the whole year
2002 are used and the aim is to maximise revenues over this
period.

Firstly, it is needed to build the probabilistic distribution
of expected generation for each PTU. Figure 3 gives the ex-
ample of a 43-hour ahead wind power forecast (given by
AWPPS) accompanied by confidence intervals for several
confidence levels. The interval bounds, provided by the
adapted resampling method described in [28], are the quan-
tiles of the probabilistic distribution of expected wind power
output.

Then, we use (4) for defining the deviation cost function.
Theα+ andα− values are determined by using averages of
imbalance costs for spill and top-up generation. It is assumed
that it is possible to estimate average imbalance costs over a
year or a season (3-month periods). This assumption fol-
lows [10], in which a thorough analysis of imbalance price
system and data in the Netherlands has shown that it may
be possible to roughly forecast imbalance prices. These two
ways of estimating imbalance costs (over 2002) lead to two
PC strategies denoted hereafter as PC strategy 1 and 2 re-
spectively.

The results of these strategies are compared with the ones
from the basic participation strategy based on spot forecasts
only (Table 3). One can notice that the consideration of un-
certainty information on wind power forecasts and estimates
of imbalance costs allows one to increase the market par-
ticipant revenue. Also, it appears more interesting to have
seasonal than annual estimates of the imbalance costs. In-
deed, energy production and consumption behaviours may
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FIGURE 3: Wind power prediction with uncertainty information. The solid
line is the wind power prediction and the solid line with squares the
measured power output. Different confidence intervals for several

confidence levels are used to build the probabilistic distribution of expected
generation.

vary significantly from one season to another, leading to dif-
ferent regulation needs. However, one has to note that the
income is not increased by diminishing the quantity of im-
balances. The optimization process only focuses on the in-
come and the amount of imbalance and is not integrated or
considered as a constraint.

TABLE 3: Simulation results over 2002 with predictions given by both
AWPPS and two different PC strategies (1: annual estimate of average

imbalance costs - 2: seasonal estimates). Thepart of imbalance represents
the volume of energy in imbalance. Theperformance ratio represents the

revenue obtained with the prediction model in comparison with the revenue
one would have obtained with perfect predictions.

AWPPS PC strategy 1 PC strategy 2

Part of imbalance (% of
contracted energy)

40.6 45.7 84.7

Performance ratio (%) 87.0 89.1 96.2

5 Conclusions

Wind power forecasting has an interest for wind power pro-
ducers aiming to participate in electricity markets. We have
shown in this paper that the use of advanced wind power
prediction techniques (based on fuzzy-neural networks on
this case) significantly increases the income of wind produc-
ers , by decreasing the amount of energy negotiated in im-
balance. Regarding the wind power prediction uncertainty
assessment, several methods are available or under devel-
opment today. Here, we have used an adapted resampling
approach developed by the authors in previous work and val-
idated on several case studies.

Because wind power forecasts contain a part of uncer-
tainty, there will always be an imbalance cost related to fore-
casting errors. In this paper, we have developed a method
that takes into account the forecast uncertainty and estimates
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of imbalance costs in order to define optimal bidding strate-
gies. This method is flexible in the sense that the deviation
cost function can be defined according to the producer’s sen-
sitivity to revenue losses related to imbalances. Also, it al-
lows one to consider a maximization of the revenue on a
long-term basis (Probabilistic Choice strategy) or a mini-
mization of the risk of losses on a short-term basis by con-
centrating on the worst scenario (Risk Analysis strategy).

Results have been presented for the real-world case study
of the participation of a wind farm at the electricity market of
the Netherlands over the year 2002. Focus has been given to
the amount of energy produced in imbalance and to the wind
power producer revenue compared to the one he would have
obtained if using perfect predictions. We have shown that
bidding strategies based on advanced techniques (PC strat-
egy) permit to augment the producer income. However, esti-
mates of imbalance costs are needed to define the deviation
cost function. Here, we have proposed to use annual or sea-
sonal estimates that may be easy to determine. It would be
of particular interest to further investigate on methods for es-
timating/forecasting imbalance prices. Further work in the
area is on-going for simulating the participation of wind en-
ergy in other European Electricity Markets.

Regarding the wind power prediction uncertainty assess-
ment, several methods are available or under development
today. Yet, as we benchmark and compare forecasting mod-
els, focus should be given to the performance of these uncer-
tainty assessment methods, in terms of reliability, resolution
(situation-dependant uncertainty estimation), etc.
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